Skip to content
Back Home
  • Home
  • The Chair
    • About
    • Our Head
    • Our Team
    • Contact
    • Past Members
  • Research
    • Publications
    • Projects
    • Teaching
    • Initiatives
    • Posts on Math and Research
    • Contributors
  • Join us!
    • Careers
    • Events
    • Past Events
  • Resources
    • Seminars / Lectures
    • Math to go!
    • Academy
    • GitHub
  • Search
Back Home
  • Search
  • Home
  • The Chair
    • About
    • Our Head
    • Our Team
    • Contact
    • Past Members
  • Research
    • Publications
    • Projects
    • Teaching
    • Initiatives
    • Posts on Math and Research
    • Contributors
  • Join us!
    • Careers
    • Events
    • Past Events
  • Resources
    • Seminars / Lectures
    • Math to go!
    • Academy
    • GitHub

Robust neural ODEs

Published June 20, 2022

The code implements the gradient regularization method of robust training in the setting of neural ODEs.
Various jupyter notebooks are included that generate plots comparing standard to robust training for 2d point clouds.

Code:

A good starting point is robustness_plots.ipynb

Code is based on GitHub: borjanG : 2021-dynamical-systems that uses the torchdiffeq package GitHub : rtqichen: torchdiffeq

 

|| Go to the Math & Research main page

You may also like

Published July 12, 2023

The ADMM-PINNs Algorithmic Framework for Nonsmooth PDE-Constrained Optimization: A Deep Learning Approach

The ADMM-PINNs Algorithmic Framework for Nonsmooth PDE-Constrained Optimization: A Deep Learning Approach Motivation This post shows the source code from the paper […]

Published July 3, 2023

Reinforcement learning as a new perspective into controlling physical systems

Reinforcement learning as a new perspective into controlling physical systems Introduction Optimal control addresses the problem of bringing a system from an […]

Published July 3, 2024

Clustering in pure-attention hardmax transformers and its role in sentiment analysis

Clustering in pure-attention hardmax transformers and its role in sentiment analysis This post provides an overview of the results in the paper […]

Published December 14, 2021

Random Batch Methods for Linear-Quadratic Optimal Control Problems

Author: Daniel Veldman, FAU DCN-AvH Code: || Also available @Daniël’s GitHub In a previous post “Randomized time-splitting in linear-quadratic optimal control“, it […]

Post navigation

  • Previous post Optimal design of sensors and actuators by E. Zuazua
  • Back to post list
  • Next post Mini-workshop: “Recent Advances in Analysis and Control”
Last news
  • FAU MoD Lecture: Exemplary applications of Machine Learning and optimization in quantum chemistry
  • Control of a Lotka-Volterra System with Weak Competition
  • EECI-IGSC 2025 (M18): Control and Machine Learning
  • JLU Short course: PDEs Meet Machine Learning: Integrating Numerics, Control, and Machine Learning by E. Zuazua
  • Workshop on Recent Trends in Applied Mathematics and Machine Learning 2025

©  2019 - 2025  – All rights reserved - FAU DCN-AvH Chair for Dynamics, Control and Numerics - Alexander von Humboldt Professorship at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany Imprint | Privacy | Accessibility | Contact