Skip to content
Back Home
  • Home
  • The Chair
    • About
    • Our Head
    • Our Team
    • Contact
    • Past Members
  • Research
    • Publications
    • Projects
    • Teaching
    • Initiatives
    • Posts on Math and Research
    • Contributors
  • Join us!
    • Careers
    • Events
    • Past Events
  • Resources
    • Seminars / Lectures
    • Math to go!
    • Academy
    • GitHub
  • Search
Back Home
  • Search
  • Home
  • The Chair
    • About
    • Our Head
    • Our Team
    • Contact
    • Past Members
  • Research
    • Publications
    • Projects
    • Teaching
    • Initiatives
    • Posts on Math and Research
    • Contributors
  • Join us!
    • Careers
    • Events
    • Past Events
  • Resources
    • Seminars / Lectures
    • Math to go!
    • Academy
    • GitHub

Controllability of Neural ODEs for Classification

Published October 1, 2024

Event: CIN-PDE 2024

• Antonio Álvarez López, UAM. Autonomous University of Madrid
• Enrique Zuazua, FAU DCN-AvH/FAU MoD. Friedrich-Alexander-Universität Erlangen–Nürnberg

Controllability of Neural ODEs for Classification
View this poster

You may also like

Published March 1, 2021

System Identification by Koopman Operators: Quantitative Analysis

• Christophe Zhang, Friedrich-Alexander-Universität Erlangen–Nürnberg • Enrique Zuazua, Friedrich-Alexander-Universität Erlangen–Nürnberg System Identification by Koopman Operators: Quantitative Analysis View this poster

Published March 1, 2021

Control and Stabilization of Geometrically Exact Beams C

• Charlotte Rodríguez, Friedrich-Alexander-Universität Erlangen–Nürnberg • Günter Leugering, Friedrich-Alexander-Universität Erlangen–Nürnberg • Yue Wang, Friedrich-Alexander-Universität Erlangen–Nürnberg Control and Stabilization of Geometrically Exact Beams […]

Published March 1, 2021

The Stochastic FHN Neuron Model in the Excitable Regime Possesses a Global Random Pullback Attractor

• Marius Yamakou, Friedrich-Alexander-Universität Erlangen–Nürnberg The Stochastic FHN Neuron Model in the Excitable Regime Possesses a Global Random Pullback Attractor View this […]

Published March 1, 2021

Parabolic Problems Arising in Real-World Applications

• Hannes Meinlschmidt, Friedrich-Alexander-Universität Erlangen–Nürnberg • Joachim Rehber, Weierstrass Institute Parabolic Problems Arising in Real-World Applications View this poster

Post navigation

  • Previous post FAU MoD Lecture: Thoughts on Machine Learning
  • Back to post list
  • Next post Hybrid Parabolic-hyperbolic Effect for Heat Equations With Memory
Last news
  • FAU MoD workshop L. Liverani / H. Holthusen
  • A domain decomposition framework for coupling physics-based and data-driven models in multi-physics problems
  • CIRM Workshop – HYCO: A Hybrid-Cooperative Strategy for Data-Driven PDE Model Learning
  • ACOMEN2025
  • CIRM Workshop: Mathematical and Computational Foundations of Digital Twins

©  2019 - 2025  – All rights reserved - FAU DCN-AvH Chair for Dynamics, Control and Numerics - Alexander von Humboldt Professorship at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany Imprint | Privacy | Accessibility | Contact