Skip to content
Back Home
  • Home
  • The Chair
    • About
    • Our Head
    • Our Team
    • Contact
    • Past Members
  • Research
    • Publications
    • Projects
    • Teaching
    • Initiatives
    • Posts on Math and Research
    • Contributors
  • Join us!
    • Careers
    • Events
    • Past Events
  • Resources
    • Seminars / Lectures
    • Math to go!
    • Academy
    • GitHub
  • Search
Back Home
  • Search
  • Home
  • The Chair
    • About
    • Our Head
    • Our Team
    • Contact
    • Past Members
  • Research
    • Publications
    • Projects
    • Teaching
    • Initiatives
    • Posts on Math and Research
    • Contributors
  • Join us!
    • Careers
    • Events
    • Past Events
  • Resources
    • Seminars / Lectures
    • Math to go!
    • Academy
    • GitHub

Controllability of Neural ODEs for Classification

Published October 1, 2024

Event: CIN-PDE 2024

• Antonio Álvarez López, UAM. Autonomous University of Madrid
• Enrique Zuazua, FAU DCN-AvH/FAU MoD. Friedrich-Alexander-Universität Erlangen–Nürnberg

Controllability of Neural ODEs for Classification
View this poster

You may also like

Published March 1, 2021

The sheep herding game: Can you beat the algorithm?

• Daniël Veldman, Friedrich-Alexander-Universität Erlangen–Nürnberg The sheep herding game: Can you beat the algorithm? View this poster

Published October 1, 2024

Clustering in Pure-attention Hardmax Transformers and Its Role in Sentiment Analysis

Event: CIN-PDE 2024 • Albert Alcalde, FAU DCN-AvH. Friedrich-Alexander-Universität Erlangen–Nürnberg • Giovanni Fantuzzi, FAU DCN-AvH. Friedrich-Alexander-Universität Erlangen–Nürnberg • Enrique Zuazua, FAU DCN-AvH/FAU […]

Published March 1, 2021

Sparse Initial Source Identification for a Diffusion – Advection Equation

• Umberto Biccari, University of Deusto | DeustoCCM • Yongcun Song, Friedrich-Alexander-Universität Erlangen–Nürnberg • Yuan Xiaoming, The University of Hong Kong • […]

Published March 1, 2021

Model predictive control with random batch methods for a guiding problem

• Dongnam Ko, Catholic University of Korea • Enrique Zuazua, Friedrich-Alexander-Universität Erlangen–Nürnberg Model predictive control with random batch methods for a guiding […]

Post navigation

  • Previous post FAU MoD Lecture: Thoughts on Machine Learning
  • Back to post list
  • Next post Hybrid Parabolic-hyperbolic Effect for Heat Equations With Memory
Last news
  • MLDS: Machine Learning, Control Theory, and PDEs: Foundations and Advances from Variational Pathologies to Diffusion Models for Generative AI
  • FAU MoD Lecture: AI Components in PDE Solvers
  • #NdW25 Long Night Sciences: Sentimentanalyse mit Transformern in Aktion
  • #NdW25 Long Night Sciences: Das Turnpike-Phänomen in Gasnetzen
  • FAU MoD Lecture: Finding the optimal model complexity of whole-brain models and digital twins

©  2019 - 2025  – All rights reserved - FAU DCN-AvH Chair for Dynamics, Control and Numerics - Alexander von Humboldt Professorship at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany Imprint | Privacy | Accessibility | Contact