Skip to content
Back Home
  • Home
  • The Chair
    • About
    • Our Head
    • Our Team
    • Contact
    • Past Members
  • Research
    • Publications
    • Projects
    • Teaching
    • Initiatives
    • Posts on Math and Research
    • Contributors
  • Join us!
    • Careers
    • Events
    • Past Events
  • Resources
    • Seminars / Lectures
    • Math to go!
    • Academy
    • GitHub
  • Search
Back Home
  • Search
  • Home
  • The Chair
    • About
    • Our Head
    • Our Team
    • Contact
    • Past Members
  • Research
    • Publications
    • Projects
    • Teaching
    • Initiatives
    • Posts on Math and Research
    • Contributors
  • Join us!
    • Careers
    • Events
    • Past Events
  • Resources
    • Seminars / Lectures
    • Math to go!
    • Academy
    • GitHub

Training of neural ODEs using pyTorch

Published September 13, 2022

Start with tutorials to get familiar with the code
Tutorial 1: Train a neural ODE based network on point cloud data set and generating a gif of the resulting time evolution of the neural ODE

Code:

Code is based on GitHub: borjanG : 2021-dynamical-systems that uses the torchdiffeq package GitHub : rtqichen: torchdiffeq

 

Code:

|| Go to the Math & Research main page

You may also like

Published December 20, 2022

Federated Learning: Protect your data and privacy

Federated Learning: Protect your data and privacy Code: A basic PyTorch implementation of the FedAvg algorithm (GitHub) Federated Learning is becoming an […]

Published September 30, 2022

Approximating the 1D wave equation using Physics Informed Neural Networks (PINNs)

Approximating the 1D wave equation using Physics Informed Neural Networks (PINNs)   Introduction Accurate and fast predictions of numerical solutions are of […]

Published July 3, 2023

Reinforcement learning as a new perspective into controlling physical systems

Reinforcement learning as a new perspective into controlling physical systems Introduction Optimal control addresses the problem of bringing a system from an […]

Published December 9, 2021

Augmented Lagragian preconditioners for incompressible flow

Author: Alexei Gazca, FAU DCN-AvH Code:   Below is a description of the types of problems that can be tackled using the […]

Post navigation

  • Previous post Course: A Practical Introduction to Control, Numerics, and Machine Learning (IFAC CPDE 2022)
  • Back to post list
  • Next post FAU MoD Lecture: Learning-Based Optimization and PDE Control in User-Assignable Finite Time
Last news
  • FAU MoD workshop L. Liverani / H. Holthusen
  • A domain decomposition framework for coupling physics-based and data-driven models in multi-physics problems
  • CIRM Workshop – HYCO: A Hybrid-Cooperative Strategy for Data-Driven PDE Model Learning
  • ACOMEN2025
  • CIRM Workshop: Mathematical and Computational Foundations of Digital Twins

©  2019 - 2025  – All rights reserved - FAU DCN-AvH Chair for Dynamics, Control and Numerics - Alexander von Humboldt Professorship at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany Imprint | Privacy | Accessibility | Contact