Skip to content
Back Home
  • Home
  • The Chair
    • About
    • Our Head
    • Our Team
    • Contact
    • Past Members
  • Research
    • Publications
    • Projects
    • Teaching
    • Initiatives
    • Posts on Math and Research
    • Contributors
  • Join us!
    • Careers
    • Events
    • Past Events
  • Resources
    • Seminars / Lectures
    • Math to go!
    • Academy
    • GitHub
  • Search
Back Home
  • Search
  • Home
  • The Chair
    • About
    • Our Head
    • Our Team
    • Contact
    • Past Members
  • Research
    • Publications
    • Projects
    • Teaching
    • Initiatives
    • Posts on Math and Research
    • Contributors
  • Join us!
    • Careers
    • Events
    • Past Events
  • Resources
    • Seminars / Lectures
    • Math to go!
    • Academy
    • GitHub

Training of neural ODEs using pyTorch

Published September 13, 2022

Start with tutorials to get familiar with the code
Tutorial 1: Train a neural ODE based network on point cloud data set and generating a gif of the resulting time evolution of the neural ODE

Code:

Code is based on GitHub: borjanG : 2021-dynamical-systems that uses the torchdiffeq package GitHub : rtqichen: torchdiffeq

 

Code:

|| Go to the Math & Research main page

You may also like

Published June 20, 2022

Robust neural ODEs

The code implements the gradient regularization method of robust training in the setting of neural ODEs. Various jupyter notebooks are included that […]

Published December 14, 2021

Random Batch Methods for Linear-Quadratic Optimal Control Problems

Author: Daniel Veldman, FAU DCN-AvH Code: || Also available @Daniël’s GitHub In a previous post “Randomized time-splitting in linear-quadratic optimal control“, it […]

Published December 9, 2021

Augmented Lagragian preconditioners for incompressible flow

Author: Alexei Gazca, FAU DCN-AvH Code:   Below is a description of the types of problems that can be tackled using the […]

Published November 14, 2025

Sentiment Analysis with Transformers

Sentiment Analysis with Transformers This post includes an app SentimentAnalysisTransformersApp created for a public outreach activity organized by the Chair for Dynamics, […]

Post navigation

  • Previous post Course: A Practical Introduction to Control, Numerics, and Machine Learning (IFAC CPDE 2022)
  • Back to post list
  • Next post FAU MoD Lecture: Learning-Based Optimization and PDE Control in User-Assignable Finite Time
Last news
  • FAU MoD Lecture: A long life: How desirable is it, evolutionarily speaking?
  • Benasque XI Workshop-Summer School 2026: Partial differential equations, optimal design and numerics
  • FAU MoD Lecture: Bridging numerics and scientific machine learning for industrial applications
  • MLPDES26, Machine Learning and PDEs Workshop (2026)
  • FAU MoD Workshop G. Fantuzzi / D. Martonová

©  2019 - 2026  – All rights reserved - FAU DCN-AvH Chair for Dynamics, Control and Numerics - Alexander von Humboldt Professorship at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany Imprint | Privacy | Accessibility | Contact