External Research Fellow. EPFL, École Polytechnique Fédérale de Lausanne
nicola.denitti@epfl.ch
Friedrich-Alexander-Universität Erlangen-Nürnberg. FAU DCN-AvH Chair for Dynamics, Control, Machine Learning and Numerics – Alexander von Humboldt Professorship.
+49 9131 85-67133
I’m a PhD student/scientific assistant at the Chair for Dynamics, Control, Machine Learning and Numerics at FAU Erlangen- Nürnberg.
My main research interests lie in the analysis and control of partial differential equations. More specifically, I’ve been working on the following topics: conservation laws; transport with rough velocity fields; flows on networks; local and nonlocal (degenerate higher-order) parabolic PDEs; free boundary problems; variational and topological methods for the study of nonlinear problems.
PhD Thesis: Analysis, control, and singular limits for hyperbolic conservation laws (July 24, 2023)
Events
• MLPDEs 2025 Workshop (April 28-30, 2024): Machine Learning and PDEs Workshop, Erlangen – Bavaria, Germany.
• July 24, 2023 | PhD defense: “Analysis, control, and singular limits for hyperbolic conservation laws”
Projects
• TRR154
My posters
The Singular limit of Nonlocal conservation Laws to Local Conservation Laws
Teaching
• WS 22/23: Transport Phenomena
• WS 22/23: Mathematical Modeling in the Life Sciences
• WS 21/22: Modeling and Analysis in Continuum Mechanics 1
• WS 21/22: Transport Phenomena
My posts on Math & Research
Control of Advection-Diffusion Equations on Networks and Singular Limits
Flows on Networks
Publications
2024
Control of Hyperbolic and Parabolic Equations on Networks and Singular limits
URL: https://hal.science/hal-03233211
BibTeX: Download , , , , :
Exponential convergence to steady-states for trajectories of a damped dynamical system modeling adhesive strings
In: Mathematical Models & Methods in Applied Sciences (2024)
ISSN: 0218-2025
DOI: 10.1142/S021820252450026X
BibTeX: Download , , , , :
Exponential convergence to steady-states for trajectories of a damped dynamical system modelling adhesive strings
In: Mathematical Models & Methods in Applied Sciences (2024)
ISSN: 0218-2025
Open Access: https://dcn.nat.fau.eu/wp-content/uploads/CocDNMadOrlZua-231029.pdf
BibTeX: Download , , , , :
On the decay of one-dimensional locally and partially dissipated and hyperbolic systems
(2024)
Open Access: https://dcn.nat.fau.eu/wp-content/uploads/PartLocDissip-tCrinBarat-nDeNitti-eZuazua.pdf
URL: https://dcn.nat.fau.eu/wp-content/uploads/PartLocDissip-tCrinBarat-nDeNitti-eZuazua.pdf
BibTeX: Download , , :
Fractional Hardy–Rellich inequalities via integration by parts
In: Nonlinear Analysis - Theory Methods & Applications 243 (2024), Article No.: 113478
ISSN: 0362-546X
DOI: 10.1016/j.na.2023.113478
BibTeX: Download , :
Pointwise constraints for scalar conservation laws with positive wave velocity
(2024)
URL: http://cvgmt.sns.it/paper/6472/
BibTeX: Download , , :
INTERFACE PROPAGATION PROPERTIES FOR A NONLOCAL THIN-FILM EQUATION
In: SIAM Journal on Mathematical Analysis 56 (2024), p. 173-196
ISSN: 0036-1410
DOI: 10.1137/22M1510297
BibTeX: Download , :
2023
A general result on the approximation of local conservation laws by nonlocal conservation laws: The singular limit problem for exponential kernels
In: Annales de l'Institut Henri Poincaré - Analyse Non Linéaire 40 (2023), p. 1205-1223
ISSN: 0294-1449
DOI: 10.4171/AIHPC/58
BibTeX: Download , , , , :
Long-time convergence of a nonlocal Burgers' equation towards the local N-wave
In: Nonlinearity (2023)
ISSN: 0951-7715
DOI: 10.1088/1361-6544/acf01d
URL: https://iopscience.iop.org/article/10.1088/1361-6544/acf01d
BibTeX: Download , , , , :
Critical functions and blow-up asymptotics for the fractional Brezis-Nirenberg problem in low dimension
In: Calculus of Variations and Partial Differential Equations 62 (2023)
ISSN: 0944-2669
DOI: 10.1007/s00526-023-02446-1
BibTeX: Download , :
Stability with explicit constants of the critical points of the fractional Sobolev inequality and applications to fast diffusion
In: Journal of Functional Analysis 285 (2023), Article No.: 110093
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2023.110093
BibTeX: Download , :
On the Controllability of Entropy Solutions of Scalar Conservation Laws at a Junction via Lyapunov Methods
In: Vietnam Journal of Mathematics (2023)
ISSN: 0866-7179
DOI: 10.1007/s10013-022-00598-9
BibTeX: Download , :
2022
Differentiability in Measure of the Flow Associated with a Nearly Incompressible BV Vector Field
In: Archive for Rational Mechanics and Analysis (2022)
ISSN: 0003-9527
DOI: 10.1007/s00205-022-01820-1
BibTeX: Download , :
On existence and uniqueness of weak solutions to nonlocal conservation laws with BV kernels
In: Zeitschrift für Angewandte Mathematik und Physik 73 (2022), Article No.: 241
ISSN: 0044-2275
DOI: 10.1007/s00033-022-01766-0
BibTeX: Download , , , :
Sharp criteria for the waiting time phenomenon in solutions to the thin-film equation
In: Communications in Partial Differential Equations (2022)
ISSN: 0360-5302
DOI: 10.1080/03605302.2022.2056702
BibTeX: Download , :
On Liouville-type theorems for the 2D stationary MHD equations
In: Nonlinearity 35 (2022), p. 870-888
ISSN: 0951-7715
DOI: 10.1088/1361-6544/ac3f8b
BibTeX: Download , , :
2021
Boundary Controllability and Asymptotic Stabilization of a Nonlocal Traffic Flow Model
In: Vietnam Journal of Mathematics (2021)
ISSN: 0866-7179
DOI: 10.1007/s10013-021-00506-7
BibTeX: Download , , , , :
Vanishing viscosity for a 2 x 2 system modeling congested vehicular traffic
In: Networks and Heterogeneous Media 16 (2021), p. 413-426
ISSN: 1556-1801
DOI: 10.3934/nhm.2021011
BibTeX: Download , , , :
Singular limits with vanishing viscosity for nonlocal conservation laws
In: Nonlinear Analysis - Theory Methods & Applications 211 (2021), Article No.: 112370
ISSN: 0362-546X
DOI: 10.1016/j.na.2021.112370
BibTeX: Download , , , :
Singular limits with vanishing viscosity for nonlocal conservation laws
In: Nonlinear Analysis - Theory Methods & Applications (2021)
ISSN: 0362-546X
DOI: 10.1016/j.na.2021.112370
BibTeX: Download , , , :