Ilias Ftouhi
Postdoctoral Researcher
Funded by Alexander von Humboldt Foundation
ilias.ftouhi@fau.de
Room 03.315 | Friedrich-Alexander-Universität Erlangen Nürnberg. FAU DCN-AvH Chair for Dynamics, Control, Machine Learning and Numerics – Alexander von Humboldt Professorship.
+49 9131 85-67138
Postdoctoral Researcher
Funded by Alexander von Humboldt Foundation
ilias.ftouhi@fau.de
Room 03.315 | Friedrich-Alexander-Universität Erlangen Nürnberg. FAU DCN-AvH Chair for Dynamics, Control, Machine Learning and Numerics – Alexander von Humboldt Professorship.
+49 9131 85-67138
I am Ilias Ftouhi. I defended my PhD at Sorbonne University in Paris in 2021 under the supervision of Professors Jimmy Lamboley and Antoine Henrot.
I am currently an Alexander von Humboldt postdoctoral researcher hosted by the Chair for Dynamics, Control, Machine Learning and Numerics.
I am interested in theoretical and numerical study of shape optimization problems and the use of deep learning techniques in solving inverse problems.
PhD Thesis: Blaschke-Santaló diagrams and other shape optimization problems (January 2021)
PhD Thesis: PhD Thesis (Slides)
My posters
Optimal shape design of sensors via a geometric approach
Sharp estimates for the cheeger constant in the planar case
My posts

Using the support function for optimal shape design
Using the support function for optimal shape design By Ilias Ftouhi 1 Motivation Led by problems of optimal placement and ...
Publications
2023
Optimal design of sensors via geometric criteria
In: Journal of Geometric Analysis 33 (2023)
ISSN: 1050-6926
DOI: 10.1007/s12220-023-01301-1
URL: https://link.springer.com/article/10.1007/s12220-023-01301-1
BibTeX: Download , :
2022
Complete systems of inequalities relating the perimeter, the area and the Cheeger constant of planar domains
In: Communications in Contemporary Mathematics (2022)
ISSN: 0219-1997
DOI: 10.1142/S0219199722500547
BibTeX: Download :
On a Pólya's inequality for planar convex sets
In: Comptes Rendus Mathematique 360 (2022), p. 241-246
ISSN: 1631-073X
DOI: 10.5802/crmath.292
BibTeX: Download :
WHERE TO PLACE A SPHERICAL OBSTACLE SO AS TO MAXIMIZE THE FIRST NONZERO STEKLOV EIGENVALUE
In: Esaim-Control Optimisation and Calculus of Variations 28 (2022)
ISSN: 1292-8119
DOI: 10.1051/cocv/2021109
BibTeX: Download :
The diagram (λ 1 , µ 1 )
In: Mathematical Reports (2022)
ISSN: 1582-3067
Open Access: http://imar.ro/journals/Mathematical_Reports/Pdfs/2022/1-2/9.pdf
URL: http://imar.ro/journals/Mathematical_Reports/Pdfs/2022/1-2/9.pdf
BibTeX: Download , :
2021
On the Cheeger inequality for convex sets
In: Journal of Mathematical Analysis and Applications (2021)
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2021.125443
URL: https://hal.science/hal-03006015/document
BibTeX: Download :
Blaschke–Santaló diagram for volume, perimeter and first Dirichlet eigenvalue.
In: SIAM Journal on Mathematical Analysis (2021)
ISSN: 0036-1410
DOI: 10.1137/20M1345396
URL: https://hal.science/hal-02850711v2/document
BibTeX: Download , :